Lean Six Sigma Green Belt Training, Organizational Excellence

Data Engineering on Google Cloud Platform

Overview

This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform.

Course Description

This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a combination of presentations, demos, and hand-on labs, participants will learn how to design data processing systems, build end-to-end data pipelines, analyze data and carry out machine learning. The course covers structured, unstructured, and streaming data.

Duration

4 days

Objectives

This course teaches participants the following skills:

  • Design and build data processing systems on Google Cloud Platform
  • Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow
  • Derive business insights from extremely large datasets using Google BigQuery
  • Train, evaluate and predict using machine learning models using Tensorflow and Cloud ML
  • Leverage unstructured data using Spark and ML APIs on Cloud Dataproc
  • Enable instant insights from streaming data

Delivery Method

Instructor-led, Instructor-led online

Audience

This class is intended for experienced developers who are responsible for managing big data transformations including:

  • Extracting, Loading, Transforming, cleaning, and validating data
  • Designing pipelines and architectures for data processing
  • Creating and maintaining machine learning and statistical models
  • Querying datasets, visualizing query results and creating reports

Prerequisites

To get the most of out of this course, participants should have:

  • Completed Google Cloud Fundamentals: Big Data & Machine Learning course OR have equivalent experience
  • Basic proficiency with common query language such as SQL
  • Experience with data modeling, extract, transform, load activities
  • Developing applications using a common programming language such as Python
  • Familiarity with Machine Learning and/or statistics